Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure.

نویسندگان

  • Bailong Xiao
  • Ming Tao Jiang
  • Mingcai Zhao
  • Dongmei Yang
  • Cindy Sutherland
  • F Anthony Lai
  • Michael P Walsh
  • David C Warltier
  • Heping Cheng
  • S R Wayne Chen
چکیده

Hyperphosphorylation of the cardiac Ca2+ release channel (ryanodine receptor, RyR2) by protein kinase A (PKA) at serine-2808 has been proposed to be a key mechanism responsible for cardiac dysfunction in heart failure (HF). However, the sites of PKA phosphorylation in RyR2 and their phosphorylation status in HF are not well defined. Here we used various approaches to investigate the phosphorylation of RyR2 by PKA. Mutating serine-2808, which was thought to be the only PKA phosphorylation site in RyR2, did not abolish the phosphorylation of RyR2 by PKA. Two-dimensional phosphopeptide mapping revealed two major PKA phosphopeptides, one of which corresponded to the known serine-2808 site. Another, novel, PKA phosphorylation site, serine 2030, was identified by Edman sequencing. Using phospho-specific antibodies, we showed that the novel serine-2030 site was phosphorylated in rat cardiac myocytes stimulated with isoproterenol, but not in unstimulated cells, whereas serine-2808 was considerably phosphorylated before and after isoproterenol treatment. We further showed that serine-2030 was stoichiometrically phosphorylated by PKA, but not by CaMKII, and that mutations of serine-2030 altered neither the FKBP12.6-RyR2 interaction nor the Ca2+ dependence of [3H]ryanodine binding. Moreover, the levels of phosphorylation of RyR2 at serine-2030 and serine-2808 in both failing and non-failing canine hearts were similar. Together, our data indicate that serine-2030 is a major PKA phosphorylation site in RyR2 responding to acute beta-adrenergic stimulation, and that RyR2 is not hyperphosphorylated by PKA in canine HF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon beta-adrenergic stimulation in normal and failing hearts.

We have recently shown that RyR2 (cardiac ryanodine receptor) is phosphorylated by PKA (protein kinase A/cAMP-dependent protein kinase) at two major sites, Ser-2030 and Ser-2808. In the present study, we examined the properties and physiological relevance of phosphorylation of these two sites. Using site- and phospho-specific antibodies, we demonstrated that Ser-2030 of both recombinant and nat...

متن کامل

Protein kinase A phosphorylation at serine-2808 of the cardiac Ca2+-release channel (ryanodine receptor) does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6).

Dissociation of FKBP12.6 from the cardiac Ca2+-release channel (RyR2) as a consequence of protein kinase A (PKA) hyperphosphorylation of RyR2 at a single amino acid residue, serine-2808, has been proposed as an important mechanism underlying cardiac dysfunction in heart failure. However, the issue of whether PKA phosphorylation of RyR2 can dissociate FKBP12.6 from RyR2 is controversial. To addi...

متن کامل

Protein Kinase A Phosphorylation at Serine-2808 of the Cardiac Ca -Release Channel (Ryanodine Receptor) Does Not Dissociate 12.6-kDa FK506-Binding Protein (FKBP12.6)

Dissociation of FKBP12.6 from the cardiac Ca -release channel (RyR2) as a consequence of protein kinase A (PKA) hyperphosphorylation of RyR2 at a single amino acid residue, serine-2808, has been proposed as an important mechanism underlying cardiac dysfunction in heart failure. However, the issue of whether PKA phosphorylation of RyR2 can dissociate FKBP12.6 from RyR2 is controversial. To addit...

متن کامل

Role of chronic ryanodine receptor phosphorylation in heart failure and β-adrenergic receptor blockade in mice.

Increased sarcoplasmic reticulum (SR) Ca2+ leak via the cardiac ryanodine receptor/calcium release channel (RyR2) is thought to play a role in heart failure (HF) progression. Inhibition of this leak is an emerging therapeutic strategy. To explore the role of chronic PKA phosphorylation of RyR2 in HF pathogenesis and treatment, we generated a knockin mouse with aspartic acid replacing serine 280...

متن کامل

Hyperphosphorylation of the cardiac ryanodine receptor at serine 2808 is not involved in cardiac dysfunction after myocardial infarction.

RATIONALE Abnormal behavior of the cardiac ryanodine receptor (RyR2) has been linked to cardiac arrhythmias and heart failure (HF) after myocardial infarction (MI). It has been proposed that protein kinase A (PKA) hyperphosphorylation of the RyR2 at a single residue, Ser-2808, is a critical mediator of RyR dysfunction, depressed cardiac performance, and HF after MI. OBJECTIVE We used a mouse ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 96 8  شماره 

صفحات  -

تاریخ انتشار 2005